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Abstract
This paper develops an efficient method for simulation of breakdown in a gas,
which explicitly makes use of the real underlying physics, in a case where
standard numerical schemes are likely to fail. We develop a ‘time-dependent
capacitor model’ (TDCM) for 2D or 3D, which ensures that the ionization rate
is consistent with energy conservation and which disallows almost all numerical
diffusion (and hence allows larger (�x,�t)). To avoid spurious ionization in
the TDCM, density is only added in a cell when the density and electric field
are high enough so that the density could physically grow to the expected final
density within the cell. Numerical diffusion is negligible in the TDCM, in
part because we only inject density into cells/capacitors when enough time
has elapsed for density to be physically present. The direction of injection is
controlled, so if, for example, density from cell [i, j ] in reality moves to cell
[i ± 1, j ± 1], it goes there directly, giving a physically correct direction of
propagation. A simple scheme for accelerating convergence, exploiting the
very different time scales which arise, is also discussed.

PACS numbers: 02.70.−c, 52.25.−b, 51.50.+v, 52.65.−y, 52.80.−s

1. Introduction

This paper is concerned with developing a physics-based approach to modelling a physical
phenomenon, for which standard numerical methods fail. Breakdown in a dielectric barrier
discharge (DBD) (or similar ‘atmospheric-pressure’ systems) is the critical phase of the
discharge, in the sense that the processes that control the energy input and the formation of
new chemical species tend to occur during breakdown. Breakdown has been modelled in a
variety of ways. The extreme nature of breakdown, with density growing very rapidly in both
space and time, makes this a very difficult phenomenon to describe numerically, however.
Standard numerical schemes often fail to reproduce correct physics, and numerical errors can
dominate over real physical behaviours. For these reasons, it is imperative to design models
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which truly capture the behaviours which are believed to be present in reality. This is the main
aim of this paper.

Numerical simulations suffer from a number of common pitfalls, some of which are
discussed in [4, 5]. It can be very difficult to be sure that a simulation is accurate and
believable. The types of errors which must be considered range from undiscovered errors in
logic, through the use of numerical schemes with behaviours which are purely artefacts of
the scheme, to employment of physical models which are inappropriate in some parameter
ranges. Partly for these reasons, some computational physicists place great emphasis on
examining the results of their simulations to make sure they can be explained with simple
physical reasoning; if they cannot, it is considerably more difficult to be confident in the
results [24].

We have previously developed methods to solve the Boltzman equation which explicitly
incorporate the pertinent physics [5]. In this paper, we adopt a similar approach to describing
breakdown of a gas. Firstly, we set up a computational model which is designed to explicitly
exhibit a specific, rather straightforward set of physical behaviours. This is the main focus of
this paper. Our goal is, at least in part, to argue and illustrate that simulation should be based
on physical considerations. Secondly, the discussion of results will reflect a physical analysis
which is designed to confirm that the findings are indeed plausible. Since our emphasis
is primarily on the method of simulation, we do not go into great detail in discussing the
physics.

The available numerical schemes can be divided into those which use a single fluid
equation to describe the electrons (that stating particle conservation), relying on equilibrium
assumptions to close the system, and those which use more moments—in particular, those
which employ the energy conservation equation in addition. The equilibrium fluid equations
can exhibit spurious ionization and this leads to significant errors [2]. The errors in an
equilibrium model occur both early during breakdown when the electric field is very strong
and later on when the electric field starts to be shielded out. When the field is strong, the
equilibrium model overestimates the ionization rate on the upstream side of the plasma and
gives the same overestimate over a wide range of discreteness parameters (�x,�t). This
means that the effect is not rectifiable by reducing numerical diffusion by means of a flux-
conserving scheme. When we turn to an energy-conserving scheme we find that it is not
subject to this problem of spurious ionization. Strictly speaking, in the energy-conserving
scheme spurious ionization is modest in general and negligible provided we employ rather
small discreteness parameters. The limitations on (�x,�t) can be partially overcome by
using a propagator (i.e. Lagrangian) scheme that also allows the density to grow exponentially
with the gain in energy as particles move from cell to cell [2, 3]. All of these schemes are
subject to numerical diffusion to varying degrees, however, and this can be a severe problem
in breakdown simulations.

The capacitor model which we introduce here provides a physically based description of
breakdown. It divides the plasma into isolated ‘capacitors’, reflecting the fact that the time
scale for density growth during breakdown is much shorter than transport time scales. This is
probably the central physical assumption of the present work. Once density is introduced to
a region with a strong electric field, breakdown is very fast. The capacitor model reflects this
by only allowing density to be introduced into capacitors at the physically correct times (as
discussed in detail below.) This procedure essentially prevents numerical diffusion and similar
errors. It introduces a second type of error however; since each capacitor is physically isolated,
it is difficult to employ energy conservation in a fully consistent form. An energy-conserving
version of the scheme, which partially relaxes the isolation of capacitors, is outlined in the
appendix. Spurious ionization is avoided by only introducing density into capacitors where
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and when that density could physically grow to the level encountered after breakdown. The
main advantages of the capacitor model are its speed and accuracy—especially its ability
to control numerical diffusion, including diffusion which obscures the direction in which
breakdown proceeds.

The time scale for density growth during breakdown is τG � 10−10 s; the transport time
scale (for a distance L ∼ 10−3 m) during breakdown is τtb � 10−8 s; the transport time scale
in the plasma, τtp, depends on the electron temperature, which falls rapidly, but τtp � 10−3 s.
The first two of these imply a severe restriction on the mesh size, in any scheme which exhibits
numerical diffusion [2]. The introduction of density into cells where it physically could not
or should not be is what we generally mean by numerical diffusion. In most mesh-based
schemes which are used to describe transport, we tolerate numerical diffusion and rely on the
vast majority of particles being in the right place. The fact that the outliers behave unphysically
is overlooked because their numbers are generally low. In problems such as ion implantation
the outliers are critical [23] but in general this is probably not the case. Breakdown is a
situation where outliers are critical — because even a small density can grow to a very large
value, and this can happen very quickly because τG � τtb. Introduction of spurious density
into a cell which should be empty leads to a chain reaction of growth and spreading of density
into other cells which should also be empty. Numerical diffusion can be limited by use of a
flux-corrected transport (FCT) scheme [16–18], although we argue here and elsewhere that
this is not sufficient to remedy the equilibrium fluid equations.

The issues which drive the work of this paper are summarized by saying that we wish to
ensure the physics is preserved, and to do this we limit numerical diffusion by only allowing
particles to move from cell to cell in a controlled set of circumstances. In order to move
particles only where they should physically go, and to make sure that energy conservation is
built into our scheme, we ‘inject’ particles into cells according to a set of rules. These points
(and the rules of injection) will be explained in more detail in section 3. Finally, a scheme is
presented to speed up the simulation, which exploits the fact that drift times are much longer
than the time scale for density growth.

In the previous work, we described a number of issues which cause complications in
one-dimensional modelling. The advantages and disadvantages of the available schemes were
discussed [1]. We recap these points briefly below. Needless to say, there are more difficulties
in higher dimensions, and these are a large part of what we address here.

2. Capacitor model

The 2D time-dependent capacitor model (TDCM) is a simple physical model of breakdown
and is largely based on the same principles as the 1D TDCM which was described elsewhere
[1]. The two-dimensional discharge (excluding the dielectric slabs and electrodes) in Cartesian
coordinates is divided into a total number of nodes N with separations of �x and �y in the
x- and y-directions. (N = Nx × Ny ; Nx is the number of nodes in the x-direction, Ny is the
number of nodes in the y-direction.) There is no reason in principle for a Cartesian mesh,
but for the present it is convenient. The discharge consists of a total number of Nc small
capacitors, where Nc = (Nx − 1)Ny + (Ny − 1)Nx . (Different sizes of capacitors can be used.
In this work, all the capacitors which lie in the same direction have the same capacitance.
The capacitance of each capacitor in the x-direction is not equal to those in y; �x �= �y.)
A number of electrons Ne is placed at each node (i.e. Ne[k] denotes a number of electrons
at node k, where k is a function of [i, j ]). Each capacitor is placed between a pair of nodes
(shown in figure 1). The total charge at each node is calculated by summing all of the charge
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Figure 1. Schematic illustrates a network of capacitors in an air gap and shows how charges Qk–m

and Qk–i move between nodes k and m, and k and i, due to the electric fields Ek–m and Ek–i

respectively, during a time step.

Q[k]

Qk1

Qk2

Qk3

Qk4

Figure 2. Schematic illustrates charges placed on the capacitor plates at node k. The total charge
Q[k] at node k equals

∑4
i=1 (Qk)i .

on each capacitor ‘plate’ around that node. As shown in figure 2, for instance, the total charge
at node k is obtained from

Q[k] = Qk1 + Qk2 + Qk3 + Qk4. (1)
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The voltage at each node is calculated using the Green’s function G[k, s] (which was
precalculated using SGFramework [4]), e.g. the voltage at node k is

V [k] =
N∑

s=1

G[k, s]Q[s]. (2)

During a time step, some fraction of the density is allowed to move within a capacitor (or,
in another words, between a node and one of its neighbours), resulting in a charge moving to a
capacitor ‘plate’. For example, when an iteration runs over the capacitor between node k and
node m (denoted as Ckm), the amount of charge

Qk–m = Ne[k]

�x
µEk–m �t, (3)

where µ ≡ µ(Ek–m) moves from node k to a capacitor plate of node m as shown in figure 1.
Here Ek–m is the electric field between nodes k and m, assumed to be in the direction towards
node m, and µ is the (electron) mobility which corresponds to Ek–m. (This mobility is
negative.) At the same time, an equal and opposite amount of charge −Qk–m is put on the
other capacitor ‘plate’ of capacitor Ckm (the capacitor plate of node k which is paired up with
a plate at node m).

The energy, W , expended in each capacitor is calculated from the change in potential
energy, which is the force (due to the electric field) multiplied by the distance that particles
move, e.g. Wk–m delivered to the capacitor between nodes k and m is found from

Wk–m = −Qk–mEk–m�x

= Qk–mVk–m, (4)

where Vk–m is the voltage difference between nodes k and m. Consequently, the number of
electrons, �Ne[k], and ions, �Ni[k], which are created at node k by electrons moving from
node m to node k and the associated ionization process (as opposed to the energy going into
excitation and other processes) are determined from

�Ne[k] = �Ni[k] = αWk–m

Eiz
. (5)

Here α ≡ α(Ek–m) is the fraction of the energy that goes into ionization, as a function of the
electric field between nodes k and m, and Eiz is the ionization potential. These newly created
particles are put back at node k to avoid any unwanted numerical diffusion and to conserve
the locality of the scheme. Particle transport between capacitors, referred to as ‘seeding of
electrons’ or ‘density injection’, only happens when it is explicitly allowed to. Once the
density and charge at each node are all, in turn, updated, the voltage and the electric field in
the discharge will then be updated.

During the breakdown, the electric field in each capacitor will tend to be reduced due to
the increase of the surface charge on the capacitor plates. Similarly to the 1D TDCM, the
breakdown in each capacitor is complete when, for instance, |Ek–m| falls so as to be equal
to or below a preset value. However, instead of replacing the broken-down capacitor with
a short circuit (as in the 1D TDCM) and to be more realistic in 2D, the particles in that
capacitor are still allowed to move (from one ‘plate’ to another) according to the value of the
instantaneous electric field. We note that, if the capacitors are completely isolated, shielding
must be achieved within one capacitor, so if its final electron density is ne and its width is �x,
the maximum field it can shield is

Es = qne

�x

ε
. (6)

Sine ne depends on E2, this puts a lower limit on E or a lower limit on �x.
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n [i,j] = N1

Ey[i,j]

n [i+1,j] = 0

n [i,j+1] = 0

n [i-1,j] = 0

Ex[i,j]

n [i,j] = N1
n [i+1,j] = 0n [i-1,j] = 0

n [i,j+1] = N2

n [i,j] = N1
n [i+1,j] = N3

n [i-1,j] = 0

n [i,j+1] = N2

   n[i, j+1]
injected with 
 density N2

   n[i+1, j]
injected with 
 density N3

Figure 3. Schematic illustrates the spurious effects which occur when the numerical movement
of particles is along the axes. Node [i, j + 1] acquires density N2 injected from node [i, j ], and
similarly node [i + 1, j ] acquires density N3 from node [i, j ]. In this case, numerical diffusion is
introduced along the axes; the real density movement should have fallen diagonally between the x
and y axes.

3. Energy conservation and density injection

We now turn to the issues which determine when density is first introduced into a cell. The
main concerns are that transport into a cell should be at the correct time, that transport should
be in the correct direction and that cells where the density cannot grow significantly according
to energy conservation should not exhibit breakdown. The final density which can be produced
in a cell is (approximately) the initial density in the cell multiplied by e(αδEi /Eiz), where δEi is
the potential energy dropped across cell i. If this product is too small to shield out the electric
field, the initial density is said to be below ‘threshold’ and injection is not allowed to take
place. Two forms of injection have been found to be necessary, depending on whether the
density threshold limit can prevent injection or not; these are described in more detail below.

The direction of injection is critical for preventing a significantly troublesome form of
numerical diffusion. If injection is along the coordinate axes, as transport inevitably will be in
most finite difference schemes (but unlike a propagator scheme [3]) then density will spread
along the axes, even in situations where the actual movement should fall between the axes.
Suppose Ex and Ey are both nonzero. The direction of injection should be given by

δy

δx
= Ey

Ex

, (7)

where δx and δy are distances that density moves in the x- and y-directions. It is possible to
make the injection be in a diagonal direction, instead of injecting in two separate directions—
one in x and one in y. Figure 3 illustrates the (usual) case where the injection is implemented
(incorrectly) so that particles drift along the x and y axes separately. A group of electrons drifts
from cell [i, j ] to [i, j + 1]. Similarly node [i + 1, j ] gets injected with density. Therefore,
cells [i, j + 1] and [i + 1, j ] have nonzero densities. Yet neither cell should have density in it.
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n [i,j] = N1

Ey[i,j]
Ex[i,j]

n [i-1,j] = 0 n [i+1,j] = 0

n [i,j+1] = 0

n [i-1,j] = 0
n [i,j] = N1

n [i+1,j] = 0

n [i,j+1] = 0 n [i+1,j+1] = N4

 

n[i+1, j+1] injected
   with density N4

Figure 4. Schematic illustrates how, e.g., cell [i +1, j +1] is injected with particles from cell [i, j ],
allowing for the effect of both Ey and Ex at cell [i, j ]. In other words, injection is done in the cell
nearest to the physically correct trajectory, without going through intermediate cells which are not
on the trajectory.

This type of injection introduces numerical diffusion. Especially in the breakdown process, if
the density is initially misplaced, a small seeded density can lead to a great deal of artificial
growth.

We now discuss one way to implement the injection more accurately. Other approaches
would clearly also be possible. In the time particles move �y in y, instead of injecting a group
of particles to cell [i, j + 1] (as explained above and in figure 3), which implies δx = 0, that
group of particles should move a distance

δx = Ex

Ey

�y (8)

in x. The nearest cell in x is employed, in the simplest possible approximation. If
1.5�x > δx > 0.5�x, then that group of particles should be injected into the next adjacent
cell in x. Thus, instead of injecting into [i, j + 1] we should inject into [i + 1, j + 1], assuming
we are moving from bottom left to top right as shown in figure 4. (We calculate the time for
particles to move a distance �y and at that time inject particles at y + �y and the nearest
cell in x. We also calculate the time to move �x, and inject at x + �x and the nearest cell
in y. This allows injection to several cells close to the true trajectory, see figure 5.) If

∣∣ δx
�x

∣∣ or∣∣ δy

�y

∣∣ > 1, then it is necessary to make sure that the movement all along the path to the final
cell is energetically allowed. The motion will be truncated otherwise. As mentioned above,
in the case of breakdown we cannot rely on the density being small in outlying regions—
breakdown will likely lead to the density very rapidly becoming high wherever any density at
all is introduced.

It was convenient to construct an array tmin(i) where i refers to the cell into which injection
occurs and tmin is the earliest time of injection from all sources. Any given cell which acts as
a source of density can inject into many other cells, at different times, as the fields evolve. A
cell which is being injected into need only be labelled by the first time tmin when it receives
density, although tmin also can vary as the run progresses.

The next two sections discuss threshold and drift injection in quantitative terms.

3.1. Threshold density injection

Suppose the distance for an electron to produce another electron is ld :

ld = Eiz

qEα
. (9)
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∆y

∆x

y-injection

δy = ∆y
δx = - 3∆x

x-injection δy ~ 0.3 ∆y

δx = − ∆x

i - 3 i - 2 i - 1 i

j

j+1

E

Figure 5. Schematic shows an example of injection in the x- and y-directions for a particular
electric field E. In y-injection, the electrons are injected from cell [i, j ] to the cell closest to
their actual trajectory after moving through one cell width in the y-direction, which in this case is
[i − 3, j + 1]. In x-injection, the electrons are injected, e.g., from cell [i, j ] to [i − 1, j ] which is
the closest cell to their trajectory after they move through �x in the x-direction.

ld is about 10–40 µm for our conditions. A single electron will produce 1012 electrons in
40 ld ; and if 40 ld is smaller than a capacitor size, the breakdown will almost certainly still
appear microscopic, i.e. local, within a cell. The initial density must be within a certain range,
depending on ld and the cell width, to be able to grow to reach saturation within the width of
the cell. If the initial density is not in that range, then it is allowed to travel downstream until
it has gone far enough that it is in the range, and then we inject density in the cell(s) where the
density reaches a level which is high enough; ne � nth, where nth is threshold density.

In our examples, we estimate that the cell width �x ∼ 15ld , so the density can rise by a
factor up to 3 × 104 while crossing the cell. A final density of nf � 1013 cm−3 in a given cell
could be produced by an initial density less than nth � 109 cm−3 which started in the same
cell. An initial density of less than about 3 × 108 cm−3 will contribute less than nf within the
same cell where it started.

The density which initially seeds the discharge is denoted by ns . This density needs to
double Ns times before it reaches threshold, and will go a distance Nsld , before it reaches a cell
where it makes a significant contribution to the final density; in that cell its density will reach
nth. Thus, the initial density ns leads to injection of a density nth, a distance Nsld downstream,
after a time delay

tth = Nsld

vdr
 (10)

where v dr is the drift velocity. Any capacitor that has density less than the threshold density
is not allowed to start breaking down unless it gets injected from somewhere else.

Let the maximum fractional growth of ne within a cell, for any given electric field, be
gc. If nf is the approximate final electron density after the capacitor has broken down, then
if a capacitor is to break down, its initial density must be �nth = nf

gc
. In figure 6, capacitor

k initially has density higher than nth; while capacitor k + 1 does not. When the run starts,
capacitor k is allowed to start breaking down. Figure 6 shows that the numbers of particles
from capacitor k + 1 grow exponentially as they cross capacitor k + 2 and reach a density
ne � nth in capacitor k + 3. Thus, capacitor k + 3 gets injected with the determined density
ne � nth at time tth, and then breakdown starts (in capacitor k + 3). The initial density in
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t = 0

Ex

nth

ln ne

xk k+1 k+2 k+3

n f

ln ne

xk k+1 k+2 k+3

nth

gcgc

grows in time
t  <  tg th

moves and grows in time t
and distance N  l

th
s d

n f

ln ne

xk k+1 k+2 k+3

nth

t = t        th

Figure 6. When the density in capacitor k + 1 is initially less than the threshold density, then
particles in that capacitor have to move downstream in order to gain energy and grow in number
such that their density reaches the threshold and breakdown can occur—in this case, in capacitor
k + 3 (after travelling a distance Nsld after a time delay tth). gc is the maximum increase in density
after crossing one capacitor. The original density in capacitor k + 1 is removed.

capacitor k + 1 is then removed. This threshold injection process occurs during the beginning
of the breakdown (when the electric field is in its maximum range); thus, it is necessary to
apply the exponential growth during the move. Since ne[k] � nth, the density in cell k will
quickly reach its final value, and Ek in capacitor k will be shielded out. Since the field Ek in
capacitor k is then relatively very small indeed, some density from capacitor k may be injected
into capacitors downstream, but capacitor k is not expected to empty out again.

3.2. Drift injection

To illustrate drift injection using the previous example, particles with density well above
threshold will drift out of capacitor k and ‘inject’ into k + 1 (if allowed by the electric field) in
the time particles take to drift the distance �x:

tdr � �x

|µ(Ek)Ek| . (11)
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t dr

t = t        th

t dr

nth

ln ne

xk k+1 k+2 k+3

nth
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xk k+1 k+2 k+3

t = t   + t            th dr

nth

ln ne

xk k+1 k+2 k+3

t = t   + 2t            th dr

Figure 7. When ne[k] � nth, a density above threshold will move to k + 1 in tdr = �x
vdr

, so density
from capacitor k gets injected downstream in k + 1 after a delay of tdr. Similarly for the injection
from capacitor k + 1 to k + 2.

Similarly, after capacitor k + 1 has been injected, then capacitor k + 2 can be injected (either
from capacitor k +1 or k +3, depending on the direction of the electric field) after an additional
drift time as illustrated in figure 7.

For the ‘drift’ injection, the exponential growth of the density is not allowed, in part in
this case because the electric field becomes weaker by the time the particles (with density
which has reached a ‘final’ value nf � nth) are drifting out of their capacitor. The ‘threshold’
injection is assumed to take place before breakdown, and so the electric field is assumed to be
strong throughout the (threshold injection) process.

Not only electrons are injected in both of the injection processes mentioned above, but
also ions (to maintain the neutrality of the plasma). Even though in reality the electron cloud
is slightly ahead of the ions, the error in the charge calculation due to injecting both is very
small because the injected charge is too small to significantly change the electric field.

3.3. Acceleration of the simulation

Since breakdown of a cell is much faster than transport between cells, the discharge settles
down between injection events, and this allows us to jump the simulation ahead to the next
injection, after settling has occurred. We determine a ‘settling time’, τset, which is much
larger than the characteristic time scale on which the density and fields relax, after an injection
event. Then when the elapsed time since the last injection τel obeys τel � τset, we regard the
simulated discharge as being in a quasi-equilibrium. No further changes are expected until the
next injection event, so we are able to advance time (without integrating the equations) until
the next injection time, when we begin integrating again, and so on. In practice, τset ∼ 0.6 ns.
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A time step is set to be �t = 0.05τdiel (where τdiel is the dielectric relaxation time)
which results in �t being about 10−13 s. The total elapsed time for a run corresponds to
approximately (3×108)�t . To illustrate the leap-ahead scheme, the first (threshold) injection
happens at 0.9 ns. The next drift injection happens at 1.9 ns. After the previous injection
we perform ∼5000 time steps in advancing the time by an amount τset. We then leap ahead
by approximately 4 × 103 time steps. If there is one cell waiting to be injected, this leap-
ahead scheme can save at least (4 × 103)�t which is approximately 1 h on a Sun Blade 2000
(1.2 GHz UltraSPARC-III, 1 GB RAM) and the time saved scales in proportion with the
number of injected cells. In general, injection events are separated by 50–100 times as long
as the events described above, so the time saving is 50–100 times greater.

4. Simulation results

In this section, we discuss the results of the modelling to establish whether or not we can
understand the behaviours obtained, since if we cannot we will conclude that the models are
likely to be in error. It will be evident that the model presented above is the result of this
process of testing and that the features discussed above were in part designed after earlier
models proved less than satisfactory. A number of features of the model were required: the
density does indeed move in a direction and at a speed which appears to be consistent with
the electric field; the energy which is put into plasma formation is as expected, based on the
stored energy in the electric field; plasma does not appear to form ‘upstream’ of where we
believe it is energetically allowed to be. We begin with a more detailed examination of one
particular simulation.

The plasma is formed from nitrogen gas (N2) in a dielectric barrier discharge (5 mm gap be-
tween two 1.5 cm dielectric slabs with εr ∼ 3.0, at atmospheric pressure) with �x = 0.25 mm
(across the discharge gap) and �y = 6 mm (along the electrodes which are 24 cm long). Details
of the applied voltage are given next.

One of our objectives is to examine the effects of the nature of the applied voltage on the
plasma which is formed. The middle part of the cathode (from y = 8.4 cm to 15.6 cm) in this
example is biased with −75 kV, and the outer part (y = 0–8.4 cm and y = 15.6–24 cm) is
biased with −7.5 kV (as shown in figure 8). The simulations are for N2, where α � 0.1. It is
probably appropriate to compare the simulations with similar values of αV , so for inert gases
with α ∼ 1 the applied voltage would be at least ten times smaller.

Since the plasma (including the surfaces where it is in contact with the dielectric) is overall
charge neutral, the net flux of the electric field leaving it is zero. The plasma (being a good
conductor) is at a potential V which is nearly constant in space. This potential must float in
the middle of the range of values of the potential at the edges of the plasma, in order for the
flux of electric field to be zero.

The time evolution of the breakdown is shown in figures 9 and 10. The complete potential
profile (across the discharge and dielectric slabs) after the breakdown is shown in figure 11.
A low initial electron density due to metastable neutral molecules at the dielectric surface
exists on the left-hand side at the beginning of the cycle (the left-hand edge of the plasma
shown in figure 9(a)). This density is assumed to be below threshold. The location at which
this density reaches threshold, and at which threshold injection occurs, is approximately one
cell to the right of where the group of electrons initially is. This threshold injection happens
within 0.94 ns (not shown). After some time a denser neutral plasma is formed (in the cells
where the density has reached threshold). The first drift injection starts from this neutral
region, moving to the right-hand side of the discharge. Soon after the breakdown front has
started moving in the x-direction, the plasma floating potential is lower than its surroundings
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Figure 8. The vacuum potential. (The voltage within the dielectric slabs is not shown.)

at one end and at the other it is higher than its surroundings. Drift injection in the x-direction
continues until the plasma reaches the dielectric surface on the right-hand side at time ∼50 ns.
During breakdown, the floating potential gets higher. Electrons start to drift outwards in the
±y-directions as the breakdown proceeds to the right-hand surface. (The injected density then
spreads out in the x- and y-directions as shown. Injecting density into a cell where the electric
field is too weak to cause breakdown, as opposed to where the density is too low, has very
little effect because breakdown does not occur when the field drops below a critical value Ec,
where Ec is approximately 105 V m−1.)

As can be seen from the plots, the plasma does create a region where V is constant, which
rapidly expands in x as the plasma expands. The feature of this region which is most interesting
from the point of view of how the plasma evolves is the location of the point where Ey changes
sign. Somewhere roughly halfway along the length of the plasma in the x-direction, Ey is
expected to reverse. Electrons are pulled out in y at the right-hand side and pushed in on the
left, in this example. However, as the plasma spreads in the x-direction, regions which were
at first pulled out are later pushed back in.

As the breakdown proceeds in x,Ex (in front of and behind the plasma in the x-direction)
increases leading to a higher density at the front of the plasma as it moves in x and a density
peak at the right-hand side. As Ex inside the plasma becomes shielded out, the magnitude of
Ex outside the plasma on the left-hand side gets bigger by a factor of 1.6. This is necessary
to maintain the voltage dropped across the plasma. This also results in rapid growth of the
electron peaks shown at the left-hand side of the discharge, as the strong Ex pushes the
electrons at the left-hand side of the plasma further to the right.

A reversal of Ex at the right-hand surface of the discharge starts to develop at t � 0.22 µs
(not shown). Electrons start to pile up on the right surface and some of the electrons in front
of the surface are pulled out sideways (in the y-direction). Electrons which are injected in the
y-direction have the potential to move in x and produce breakdown, although a sufficiently
high Ex is needed if the breakdown is to continue in the x-direction at this y location. Since Ex

gets weaker as the plasma moves outward in y (mostly because of the geometry employed),
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Figure 9. Time evolution of breakdown. The time evolution of electron density (on the left) and
voltage in the discharge are shown. The contours in the density plots refer to the logarithm of
the electron density per cubic centimetre. The outermost contour represents 2 × 1010 cm−3. The
electron density on the surfaces of the dielectric is not shown. Time = 58 ns (a) and 0.84 µs (b).
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Figure 10. Time evolution of breakdown. The highest peak (during the observed time) has a
magnitude of 2.3 × 1012 cm−3. Time = 7.9 µs.
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Figure 11. The voltage across the discharge and dielectric slabs at t = 7.9 µs.
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Figure 12. A perspective view of the logarithm of the electron density at 7.9 µs. �x = 0.25 mm
and �y = 6.0 mm.

the breakdown will eventually stop spreading. Figure 12 shows a perspective view of the
logarithm of the electron density at 7.9 µs. The best test of these results would be by means
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of fully Lagrangian (mesh-free) 2D simulations [22]. We hope to develop such a calculation
in future.

5. Conclusion

A method for simulation of breakdown in DBDs has been discussed, which is physically based
and computationally efficient enough to allow multidimensional calculations. The key features
of the method are that it results in very low levels of numerical diffusion and it captures the
correct physics of the breakdown. Numerical diffusion can otherwise lead to density moving
at the wrong rate and in the wrong direction; these problems are made severe by the extreme
nature of breakdown. The other main issue addressed is ensuring that density only grows in
a physically correct fashion, in accordance with conservation of energy. The main emphasis
of this paper is on developing a model which reflects the physics which is believed to be
taking place, and hence eliminating potential errors. A ‘leap-ahead’ scheme was outlined,
which exploits the significant differences in time scale present in the problem to accelerate
convergence.

Results of simulations were presented. Preliminary discussion of the physical principles
controlling the breakdown process was given. It was argued that the models are behaving in a
plausible fashion, since the main observations we can make are capable of being explained by
means of simple arguments. While the accuracy of the model has been discussed in 1D [1], this
has not been done yet in 2D. Future work will include Lagrangian (i.e. particle) simulations,
which should allow us to test the validity of these models without sacrificing accuracy.

Appendix. Energy-conserving scheme

In this section, a fully energy-conserving scheme is described. The breakdown front has a
number of electrons ne which moves forward at a speed equal to −µE, giving rise to a flux
per unit area per second of magnitude ne|µE|. As the front advances, in the interval between
two nodes, the number arriving at the ‘target’ node m per second (from node k) is thus

Nt = Ne[k]

�x
|µEk–m| �t, (A.1)

where Ne[k] is the number of electrons at the source node k and µ ≡ µ(Ek–m). The number
leaving the source node k is

Ns = Nt exp

(
− α

Eiz
E�x

)
, (A.2)

where α ≡ α(Ek–m). This gives the correct flux at the target node. It is clearly more physically
correct than saying that equation (A.1) is the number leaving the source node, since if that
were the case there would be an unphysically large flux at the target node. Thus, after moving
electrons from node k to node m during one time step, the changes in electron numbers are

�Ne[k] = −Ns (A.3)

�Ne[m] = Nt . (A.4)

The number of ionizations is

�Niz = Nt − Ns = Nt

(
1 − exp

(
− α

Eiz
Wk–m

))
. (A.5)
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An ion charge �Qi is introduced at each time step,

�Qi = q�Niz. (A.6)

The mean position x̄i of the ions (measured from the node from which the electrons depart)
can be written as

x̄i =
∫ �x

0 x eβx dx∫ �x

0 eβx dx

= �x
eβ�x

eβ�x − 1
− 1

β
, (A.7)

where β = αE
Eiz

. If β�x � 1, x̄i → �x; the ions will nearly all go to the target node. A
simple convective scheme (CS) mapping rule [5] is used to share the positive charge (�Qi)

between the two nodes. Hence, when a number of electrons, �Niz, are created while electrons
are moving from node k to node m, the ion charge is shared between nodes k and m according
to

δQi[k] =
(

1 − x̄i

�x

)
�Qi (A.8)

δQi[m] = x̄i

�x
�Qi, (A.9)

respectively. In this scheme, the electron charge Qe and the ion charge Qi are treated
separately, unlike the previous description where the charge Q is the total charge.

In this version of the capacitor model, each capacitor in the network is no longer totally
isolated. Once density is first injected into a capacitor (in the sense that the injection time
has passed) all the negative fixed charge, Qe, is converted to be mobile charge, qNe. (The
negative fixed charge Qe at that node is set to be zero.) This results in a greater number of
mobile charges being available for conduction than in the original scheme. The total charge
Q at each node can be obtained by summing all the charges at the node, for example, the total
charge at node k can be calculated from

Q[k] =
{

Qi[k] + Qe[k] if Ne[k] = 0.0 (before injection),

Qi[k] − qne[k] if Ne[k] > 0.0 (injection has occurred).
(A.10)

(Qe is a negative number.) The voltage at each node is found as in equation (2).
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